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SUMMARY

A three-dimensional numerical model has been developed to simulate strati�ed �ows with free surfaces.
The model is based on the Reynolds-averaged Navier–Stokes (RANS) equations with variable �uid
density. The equations are solved in a transformed �-coordinate system with the use of operator-
splitting method (Int. J. Numer. Meth. Fluids 2002; 38:1045–1068). The numerical model is validated
against the one-dimensional di�usion problem and the two-dimensional density-gradient �ow. Excellent
agreements are obtained between numerical results and analytical solutions. The model is then used
to study transport phenomena of dumped sediments into a water body, which has been modelled as
a strongly strati�ed �ow. For the two-dimensional problem, the numerical results compare well with
experimental data in terms of mean particle falling velocity and spreading rate of the sediment cloud
for both coarse and medium-size sediments. The model is also employed to study the dumping of
sediments in a three-dimensional environment with the presence of free surface. It is found that during
the descending process an annulus-like cloud is formed for �ne sediments whereas a plate-like cloud
for medium-size sediments. The model is proven to be a good tool to simulate strongly strati�ed free
surface �ows. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: 3D numerical model; strati�ed �ows; free surface; sediment dumping; Navier–Stokes
equations solver

1. INTRODUCTION

Complex strati�ed �ows are encountered in natural processes and engineering practices, in
which non-uniform distribution of temperature, solute concentration (e.g. salinity), air bubble
or suspended particle (e.g. sediment) exists. The non-uniformity of these physical variables
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reveals themselves through the change of e�ective �uid density. The studies of strati�ed �ows
are especially important in estuarial and coastal regions, where density strati�cation can be
induced by many natural or man-made processes. Examples include sediment-laden �ows
above seabed, wave-river �ow interaction in estuaries, internal waves on the continental shelf,
buoyant plumes and jets around marine outfalls and sediment dumping by barges.
Conventionally, strati�ed �ows are solved with Boussinesq assumption (e.g. Reference [1]).

Boussinesq assumption can simplify the problem but its validity relies on the physical con-
dition of weak strati�cation. However, it has been observed [2] experimentally that for a
non-Boussinesq case, where the initial density di�erence between the plume and ambient �ow
is large, the entrainment velocity partly depends on the ratio of the plume density to the am-
bient �uid density. The recent work of Woods [3] suggested that non-Boussinesq e�ects may
have a great impact on the shape and density evolution of a plume over a certain distance
above the source. Thus, for strong �ow strati�cation, the direct solution to the Navier–Stokes
equations (NSE) without Boussinesq assumption should be used to provide more accurate
results.
There are a few numerical models that solved NSE with varying density, most of which,

however, were for 2D �ows. For example, Gu [4], by using a 2D unsteady model, examined
submerged warm turbulent buoyant jets in a strati�ed lake or reservoir with an ice cover; Liu
et al. [5] simulated the salinity �eld and tidal current by 2D models with di�erent types of
turbulence closure models; Shen et al. [6] used a turbulent two-phase �ow model to simulate
turbulent strati�ed �ows.
In recent years, several 3D models for strati�ed �ows have been developed, all of which,

however, employed either the Boussinesq approximation (e.g. References [7–12]) for weakly
strati�ed �ows or hydrostatic pressure assumption that restrict the application to long waves
only (e.g. References [8, 13, 14]).
The 3D numerical model that solves the original NSE or its kind for strati�ed free surface

�ows has rarely been reported. In this paper, we will present a 3D numerical model for general
strati�ed free surface �ows, in which neither Boussinesq assumption nor hydrostatic pressure
assumption is employed. The model is the extension of the earlier model developed by Lin and
Li [15] who solved NSE in �-coordinate for constant density �uids. By introducing density
variation, a transport equation for �uid density is solved by the cubic-interpolated propagation
(CIP) method developed by Yabe et al. [16]. The CIP method has the advantage of capturing
the moving sharp interface front. The developed model will be validated for various strati�ed
�ow problems that will be detailed in the later sections.

2. GOVERNING EQUATIONS

For a 3D incompressible strati�ed �ow, the governing equations are NSE. For turbulent �ows,
NSE can be transformed into Reynolds-averaged Navier–Stokes (RANS) equations by taking
the ensemble average of the original equations. The resulting equations are

@uI
@x∗
I
= 0 (1)
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@uI
@t∗

+ uJ
@uI
@x∗
J
= −1

�
@p
@x∗
I
+ gI +

1
�
@�IJ
@x∗
J

(2)

where I; J =1; 2; 3, uI is the mean velocity component in the I th direction, p the mean pres-
sure, � the mean density, and

�IJ =�(�+ �t)
(
@uI
@x∗
J
+
@uJ
@x∗
I

)

the combinations of the molecular viscous stresses and turbulent Reynolds stresses, where �
is the kinematic molecular viscosity and �t kinematic eddy viscosity.
The mean �uid density � in Equation (1) can be described by the scalar transport equa-

tion as

@�
@t∗

+ (uJ + uTJ )
@�
@x∗
J
=

@
@x∗
J

(
�t
@�
@x∗
J

)
(3)

where �t = vt=�t is the turbulent di�usivity for � with �t being the turbulent Schmidt number.
(uT1; uT2; uT3)= (0; 0;−wd) is the drift velocity for non-dissolving substances (e.g. air bubble,
sediment) that represent the additional separation velocity of substance from its mean plume.
The determination of the drift velocity wd and eddy viscosity �t=�t depends upon the �ow
type and will be detailed when case studies are made. It is noted that for solute in a laminar
�ow, Equation (3) can be reduced to (@�=@t∗)+uJ (@�=@x∗

J )=0, the original incompressibility
condition for �uid.
The governing equation for the free surface displacement can be obtained by integrating

vertically the continuity Equation (1) with appropriate boundary conditions:

@�
@t∗

+
@
@x∗
J

∫ �

−h
uJ dz∗=0 (4)

where J =1; 2 and � is the surface displacement.

3. COORDINATE TRANSFORMATION AND NUMERICAL PROCEDURES

3.1. Coordinate transformation

The numerical discretization used in the study is similar to that in Reference [15], and thus it
is only described here brie�y. First, the �-coordinate transformation is introduced that would
map the irregular computation domain to a regular computational domain. Assuming the free
surface is the single function of the horizontal plane, a �-coordinate, which is modi�ed from
Blumberg and Mellor’s [17] original proposal, is introduced as follows:

t= t∗; x= x∗; y=y∗; �=
z∗ + h
D

(5)
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where h is still water depth and D= �+h. Substituting the above de�nition into the governing
Equations (1)–(3), we obtain

@u
@x
+
@u
@�

@�
@x∗ +

@v
@y
+
@v
@�

@�
@y∗ +

@w
@�

@�
@z∗

=0 (6)

@u
@t
+ u

@u
@x
+ v

@u
@y
+!

@u
@�

=−1
�

(
@p
@x
+
@p
@�

@�
@x∗

)
+ gx

+
1
�

(
@�xx
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+
@�xx
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)
(7)

@v
@t
+ u

@v
@x
+ v

@v
@y
+!

@v
@�

=−1
�

(
@p
@y
+
@p
@�

@�
@y∗

)
+ gy

+
1
�
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@�yx
@x

+
@�yx
@�

@�
@x∗ +

@�yy
@y

+
@�yy
@�

@�
@y∗ +

@�yz
@�

@�
@z∗

)
(8)

@w
@t
+ u

@w
@x
+ v

@w
@y
+!

@w
@�

=−1
�
@p
@�

@�
@z∗

+ gz

+
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�
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+
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+
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)
(9)

@�
@t
+ u

@�
@x
+ v

@�
@y
+!0

@�
@�

=
@
@x

[
�t

(
@�
@x
+
@�
@�

@�
@x∗

)]

+
@
@y

[
�t

(
@�
@y
+
@�
@�

@�
@y∗

)]
+
@
@z

[
�t

(
@�
@�

@�
@z∗

)]
(10)

where

! =
@�
@t∗

+ u
@�
@x∗ + v

@�
@y∗ + w

@�
@z∗

!0 =
@�
@t∗

+ u
@�
@x∗ + v

@�
@y∗ + (w − wd) @�@z∗
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and,

@�
@t∗

= − �
D
@D
@t

@�
@x∗ =

1
D
@h
@x

− �
D
@D
@x

@�
@y∗ =

1
D
@h
@y

− �
D
@D
@y

@�
@z∗

=
1
D

In the transformed space, the stresses are calculated as follows:

�xx=2�(�+ �t)
(
@u
@x
+
@u
@�

@�
@x∗

)

�yy=2�(�+ �t)
(
@v
@y
+
@v
@�

@�
@y∗

)

�zz=2�(�+ �t)
(
@w
@�

@�
@z∗

)

�xy= �yx=�(�+ �t)
(
@u
@y
+
@u
@�

@�
@y∗ +

@v
@x
+
@v
@�

@�
@x∗

)

�xz= �zx=�(�+ �t)
(
@u
@�

@�
@z∗

+
@w
@x
+
@w
@�

@�
@x∗

)

�yz= �zy=�(�+ �t)
(
@v
@�

@�
@z∗

+
@w
@y
+
@w
@�

@�
@y∗

)

(11)

The governing Equation (4) for the free surface movement is converted into

@�
@t
+
@
@x

[
D

∫ 1

0
u d�

]
+
@
@y

[
D

∫ 1

0
v d�

]
=0 (12)

3.2. Numerical procedures

The numerical solution procedure adopted in this paper is on the basis of the operator-splitting
method [15]. The introduction of variable density a�ects the numerical solution procedure. In
the following sections, the numerical implementations will be summarized and the major
changes that are caused by the density variation will be highlighted.

3.2.1. Convection step. In this section, the convection terms in the momentum equations from
(7) to (9) are solved. Due to the similarity of these three equations, only Equation (7) is
discussed here as well as in the di�usion step. The other two equations can be solved in the
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same way. The corresponding �nite di�erence form can be written as

un+1=3i; j; k − uni; j; k
�t

+
(
u
@u
@x
+ v

@u
@y
+!

@u
@�

)n
i; j; k

=0 (13)

Since the density variation does not a�ect the convection term, the combination of quadratic
backward characteristic method and Lax–Wendro� method as used by Lin and Li [15] is still
applied in this step.

3.2.2. Di�usion step. The di�usion is solved following the convection step. In this step, the
density variation needs to be treated properly when stresses are calculated. For instance, the
corresponding �nite di�erence scheme for Equation (7) reads

un+2=3i; j; k − un+1=3i; j; k

�t
=

1
�i; j; k

(
@�xx
@x

+
@�xx
@�

@�
@x∗ +

@�xy
@y

+
@�xy
@�

@�
@y∗ +

@�xz
@�

@�
@z∗

)n+1=3
i; j; k

(14)

All stress terms in the above equations can be calculated by using Equation (11). The central
di�erence method is used to discretize all the partial di�erentiation terms in the above equation.

(
@�xx
@x

)n+1=3
i; j; k

=
(�xx)

n+1=3
i+1=2; j; k − (�xx)n+1=3i−1=2; j; k
(�xi−1 + �xi)=2

where

(�xx)
n+1=3
i+1=2; j; k = 2��i+1=2; j; k

[
ui+1; j; k − ui; j; k

�xi
+
ui+1=2; j; k+1 − ui+1=2; j; k−1

��k−1 + ��k

(
@�
@x∗

)
i+1=2; j; k

]n+1=3

(�xx)
n+1=3
i−1=2; j; k = 2��i−1=2; j; k

[
ui; j; k − ui−1; j; k

�xi−1
+
ui−1=2; j; k+1 − ui−1=2; j; k−1

��k−1 + ��k

(
@�
@x∗

)
i−1=2; j; k

]n+1=3

3.2.3. Pressure-updating step. The pressure is updated by solving the Poisson pressure equa-
tion with the use of a sparse matrix solver such as conjugate gradient (CG) method as used by
Lin and Li [15]. In this step, the pressure and body force on the right-hand side of Equations
(7)–(9) are �rst discretized as follows:

un+1i; j; k − un+2=3i; j; k

�t
= −1

�

(
@p
@x
+
@p
@�

@�
@x∗

)n+1
i; j; k

+ gx (15)

vn+1i; j; k − vn+2=3i; j; k

�t
= −1

�

(
@p
@y
+
@p
@�

@�
@y∗

)n+1
i; j; k

+ gy (16)

wn+1i; j; k − wn+2=3i; j; k

�t
= −1

�

(
@p
@�

@�
@z∗

)n+1
i; j; k

+ gz (17)
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and the continuity Equation (6) is discretized as follows:

(
@u
@x
+
@u
@�

@�
@x∗ +

@v
@y
+
@v
@�

@�
@y∗ +

@w
@�

@�
@z∗

)n+1
i; j; k

=0 (18)

Performing the following operation:

@(15)
@x

+
@(15)
@�

@�
@x∗ +

@(16)
@y

+
@(16)
@�

@�
@y∗ +

@(17)
@�

@�
@z∗

and making use of (18), we obtain the modi�ed Poisson pressure equation as follows:

{
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@x
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1
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@p
@x

)
+
@
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@p
@y
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@x∗
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+
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+
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1
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(
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+
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(
1
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+
@
@�

(
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+
(
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+
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@y∗@y

) (
1
�
@p
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) }n+1
i; j; k

=
1
�t

(
@u
@x
+
@u
@�

@�
@x∗ +

@v
@y
+
@v
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@�
@y∗ +

@w
@�

@�
@z∗

)n+2=3
i; j; k

(19)

The left-hand side of (19) di�ers from that in Reference [15] with the inclusion of density
derivative. The �nite di�erence representation can be exempli�ed by expressing the �rst term
in x-direction:

[
@
@x

(
1
�
@p
@x

)]m
i; j; k

=
1
�x

[(
1
�
@p
@x

)
i+1=2; j; k

−
(
1
�
@p
@x

)
i−1=2; j; k

]m

=
1
�x

[
1

�i+1=2; j; k

pi+1; j; k − pi; j; k
�xi

− 1
�i−1=2; j; k

pi; j; k − pi−1; j; k
�xi−1

]m
(20)

A sparse matrix will result from (19) with 7 diagonal lines originating from �rst- and second-
order derivatives of pressure and another 8 from second-order cross-di�erentiations of pressure.
The matrix can be solved by the standard matrix solvers as employed by Lin and Li [15],
i.e. conjugate gradient (CG) or successive overrelaxation (SOR) method.

3.2.4. Velocity-correction step. After the pressure is updated, it can be substituted into
(15)–(17) to obtain the new velocity. For example, the horizontal velocity is obtained as
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follows:

un+1i; j; k − un+2=3i; j; k

�t
= −1

�

(
@p
@x
+
@p
@�

@�
@x∗

)n+1
i; j; k

+ gx

= − 1
�xi−1 + �xi

(
1

�i+1=2; j; k

(pi+1; j; k − pi; j; k)�xi−1
�xi

+
1

�i−1=2; j; k

(pi; j; k − pi−1; j; k)�xi
�xi−1

)

− 1
��k−1 + ��k

(
1

�i; j; k+1=2

(pi; j; k+1 − pi; j; k)��k−1
��k

+
1

�i; j; k−1=2

(pi; j; k − pi; j; k−1)��k
��k−1

)
@�
@x∗ + gx (21)

3.2.5. Density tracking step. After the new velocities are obtained, the transport equation
(10) can then be solved. The similar split operator method is used to treat the advection
and di�usion terms separately. In this study, the CIP method [16], which gives an accurate
solution for front capturing, is used to solve the advection term. The detailed description of
CIP method can be referred to the original paper by Yabe et al. [16]. The basic �nite di�erent
form of CIP method in the 1D case is simpli�ed as

�n+1i; j; k =

[
(ai; j; k�+ bi; j; k)�+

(
@�
@x

)n
i; j; k

]
�+ �ni; j; k

(
@�
@x

)n+1
i; j; k

= (3ai; j; k�+ 2bi; j; k)�+
(
@�
@x

)n
i; j; k

(22)

where �=−ui; j; k�t. The coe�cients ai; j; k and bi; j; k in Equation (22) are determined from the
continuities of �i; j; k and its spatial derivatives (@�=@x)ni; j; k at grid points.

3.2.6. Free surface tracking step. Finally, the free surface displacement is updated by solving
Equation (12). The �nite di�erence form is as follows:

�n+1i; j; k − �ni; j; k
�t

= − 1
�xi−1 + �xi

(
�xi−1

FXi+1; j; k − FXi; j; k
�xi

+�xi
FXi; j; k − FXi−1; j; k

�xi−1

)

− 1
�yj−1 + �yj

(
�yj−1

FYi; j+1; k − FYi; j; k
�yj

+�yj
FYi; j; k − FYi; j−1; k

�yj−1

)
(23)
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where FX and FY are the momentum �uxes in x- and y-directions, and their �nite di�erence
forms have been detailed in Reference [15].

4. MODEL VERIFICATION

4.1. Additional convective e�ect in a strati�ed �ow

Consider the following 1D di�usion problem with a spatially variable density, which is sim-
pli�ed from Equation (7) by neglecting the convection, pressure and body force in a 1D
untransformed domain:

@u(x; t)
@t

=
1
�(x)

@
@x

[
2��(x)

@u(x; t)
@x

]
(24)

In the above problem, the density is assumed to vary with space only. Di�erentiating the
above equation by parts, we obtain

@u(x; t)
@t

− c(x)@u(x; t)
@x

=2�
@2u(x; t)
@x2

(25)

where c(x)= [2�=�(x)][@�(x)=@x]. It is seen that the original di�usion problem with a variable
density is equivalent to a convection–di�usion problem with the convective velocity being the
function of �, � and @�=@x. Equation (25) has analytical solutions for some simple initial and
boundary conditions. For example, under the following initial and boundary conditions:

IC

{
u(x; 0)=0 at − ∞6 x6 0

u(x; 0) = u0 = 1 at 06 x6+∞
BC

{
u(−∞; t)=0
u(+∞; t)=1

the analytical solution to Equation (25) can be found as

u(x; t)= u0

{
1− 1

2
erfc

[
x + c(x)t
2
√
�t

]}
(26)

In this test, the �uid density is taken to be �(x)=1000+25x (kg=m3), and the density gradient
is thus a constant [@�(x)]=@x=25kg=m4. The kinematic viscosity is set to � = 1:0m2=s.
Equation (25) is solved by using the present model in a �nite domain of −20m6 x6 20m.

The computation has been carried out up to 20 s. The numerical results are compared to
analytical solutions in Figure 1. We have observed that the model is in good agreement with
the exact solution. Both the numerical results and analytical solution show that the centre of
pro�le (u=0:5m=s) moves to left due to the additional convective process induced by density
variation.

4.2. Horizontal density-gradient �ow

In this section, a horizontal density-driven �ow is simulated. Considering a 2D �ow whose
density is a linear function of x only, i.e. @�=@x= �, where � is a constant, the governing
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Figure 1. Comparisons of numerical velocity pro�le at t=1; 2; 5; 10; 20 s with analytical solution.

equation (7) in an untransformed domain can be reduced to

1
�
@p
@x
= vz

@2u
@z2

(27)

where �z is the vertical di�usivity. This is a simpli�ed case of estuarial �ow driven by salinity
gradient (see Figure 2). When the run-o� and bottom friction are neglected, O�cer [18] gave
the analytical expression for the horizontal velocity as the function of z:

u(z)=
1
24
g�h3

��z

[
1− 6

( z
h

)2
+ 4

( z
h

)3]
(28)

In this test, the following values are used: �z=0:005 m2=s, h=20 m, �=1 kg=m3=km,
�=1025 kg=m3, and the basin has a length of L=20 km. The numerical simulation was
performed by using 20 meshes in vertical direction and 20 meshes in horizontal direction.
The numerical results at the steady state are shown in Figure 3. Very good comparisons are
obtained between numerical results and analytical solution.
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Figure 2. Schematic diagram of density-driven �ow in a tank.
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Figure 3. Comparisons of velocity pro�le between numerical results and analytical
solution for a horizontal density-gradient �ow.
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5. CASE STUDIES

5.1. Background of sediment dumping

Ocean disposal of dredged material is a common practice after the dredging of navigation
channels and harbours, or during the construction of breakwaters as well as land reclama-
tion. The accurate prediction of settling processes of disposed material in open waters, such
as descending, transport and dispersion of the material, is of practical importance for both
engineering management and environmental protection.
A few experimental studies on particle thermals were performed by Murota et al. [19],

Nakatsuji et al. [20], Tamai et al. [21] and B�uhler and Papantoniou [22]. Nakatsuji et al.
[20] found that the dynamic behaviour of a sand cloud is close to the heavy thermal motion
and the plane particle clouds approached a constant frontal velocity in their �nal stage. The
particles move independently and motion is dominated by the balance between the buoyant
force and the drag force on each particle with relatively large particle sizes. B�uhler and
Papantoniou [22] suggested that suspension thermals eventually evolve into particle swarms,
which descend at a constant velocity, and grow slightly in size along the path. They proposed
that the ratio of the square root of the initial buoyancy �ux to the settling velocity is a
characteristic length scale in �ow transition stage from a suspension thermal to a particle
swarm.
To better understand those mechanisms, a number of researchers investigated the dump-

ing process numerically. Oda and Shigematsu [23] analysed the 2D descent and dispersion
behaviours of soil particles in still waters by a Combined-DEM-MAC method, which cou-
pled two numerical methods in order to consider the initial condition and the interaction
between particles and �uid �ow. Li [9] performed numerical experiments of dynamic motions
of dumping particles from initial particle thermal to the swarm stage. By assuming the discrete
particles can be represented by a continuous density �uid, the approach produced satisfactory
results against experimental measurements. Boussinesq assumption was applied in the above
numerical model.
In this study, the present numerical model is applied to investigate the dumping process.

To verify the numerical model, comparisons will be made between numerical results and
available experimental data by Murota et al. [19] and Nakatsuji et al. [20] for both coarse
and medium-size sediments in 2D cases. The model will then be used to study 3D sediment
dumping problems with the presence of free surfaces. The physical phenomena of free surface
deformation and radial spreading of the sediment clouds will be examined.

5.2. Determination of physical parameters

5.2.1. Drift velocity. The drift velocity in Equation (3) is the result of separation of suspended
particle from its ambient �ow. Apparently, for an extreme case of mean �uid density being
equal to particle density (this may never happen in reality no matter how compact the particles
are due to the �nite value of porosity), this drift velocity equals zero because its vertical
motion can be fully governed by the local density gradient. On the other hand, for a very
dilute �ow where the mean density gradient is negligible, this drift velocity will approach to
the settling velocity of individual solid particle because every solid particle settles down by
its own net weight regardless of the nearby mean �uid density gradient. Therefore, the drift
velocity is in principle the function of local density. In this study, however, for the simplicity
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of the treatment and the consideration of the fact that the sediment plume will quickly spread
out after the release, we decide to approximate the drift velocity by the settling velocity of
individual sediment:

wd =Vs =

√
4g
3CD

�s − �a
�a

d (29)

where �s = 2650kg=m3 is the density of the particle, �a = 1000kg=m3 is the density of ambient
water, d is the diameter of the particle and CD indicates the drag coe�cient which for spherical
particles is expressed as [24]

CD =
24
Re
(1 + 0:1315Re0:82−0:05 log10 Re) 0:01¡Re6 20

CD =
24
Re
(1 + 0:1935Re0:6305) 206Re6 260

(30)

We shall realize that by adapting the above treatment, the downward motion of the sediment
plume can be overestimated in the early stage when the mean �uid density is still signi�cant;
this will be further discussed in the following simulations.

5.2.2. Eddy viscosity. The proper choice of eddy viscosity model is very important in order
to predict the correct spreading rate of sediment plume. In this study, the simple mixing-
length hypothesis neglecting again the density e�ect is used to determine the eddy viscosity
in Equation (2). Following Rodi [25], the expression of the eddy viscosity �t is

�t = l2m

[(
@ui
@xj

+
@uj
@xi

)
@ui
@xj

]1=2
(31)

where the mixing length lm is calculated by lm =Cb with b being de�ned as the normal
length (half width) of the cloud (see Figure 4). In the computation, b changes with time
and it measures from the centre of the cloud to its outermost edge where the local density
�=�a + 0:1(�max − �a) with �max being the maximal density in the entire domain at that
instance. C=0:09 is the mixing length coe�cient. The Schmidt number is set to 1.0 that
renders �t = �t in Equation (3).

5.3. Numerical experiments for 2D cases

The present numerical model has been applied to predict the settling behaviour and deposition
con�guration of sediments dumped into a water tank as shown in Figure 4. The computational
conditions follow those in the experiment conducted by Murota et al. [19] and Nakatsuji et al.
[20]. In this study, we simulated sediments with three mean diameters, namely, d50 = 0:8mm
(medium-size), 1:3 mm (medium-size) and 5:0 mm (coarse). The computational domain is
chosen to be 1m× 1m that is discretized by a uniform mess system of 100× 100. The initial
volume of particles is chosen to be q0 = 5 cm2 in Case 1 for the study of falling velocity of
the sediment cloud and q0 = 10 cm2 in Case 2 for the study of spreading rate.
The comparisons of calculated results and experimental data for the falling velocity of the

particle cloud are displayed in Figure 5 for both coarse and medium-size sediments. In this
�gure the falling velocity of the particle cloud Wc, which is de�ned as the velocity of the
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Figure 4. Illustration of sediment dumping.
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Figure 5. Comparisons of falling velocities of the sediment clouds as the function of
settling distance for Case 1 (q0 = 5 cm2).
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centroid of the sediment cloud, is normalized by the characteristic velocity based on buoyancy
�ux F0 =

√
g
√
q0��=� where ��=�c−�a is the initial density di�erence between the particle

cloud (�c) and the ambient water (�a). In the following simulation, the porosity of sediment is
set to �=0:394 that makes �c = 2000kg=m3. The settling distance Z is measured from the free
surface downward to the centroid of the sediment cloud and it is normalized by the square root
of q0 in Figure 5. For larger d50 = 5:0mm, the falling velocity of the cloud quickly approached
a constant value that is close to the settling velocity of individual particles in calm water.
For smaller d50 = 0:8 mm the dynamic behaviour of the sediment cloud is similar to thermal
motion. The falling velocity of the cloud accelerates �rst and then reduces gradually. The
acceleration of the cloud has been overestimated in the early stage when the mean density is
still high because of the overestimation of actual drift velocity in (29) with the use of settling
velocity. For �ner sediments, it takes much longer time for the sediment cloud to reach the
constant value of the settling velocity.
The spreading width Rc = 2b of the sediment clouds is investigated in Case 2 and presented

in Figure 6. The numerical results are in fair agreement with the experimental data. Both
numerical and experimental results show that the larger the particle size, is, the smaller the
spreading rate of the cloud. Further inspection shows that the width of the cloud varies nearly
linearly with the settling distance for smaller sediments, while it bends slightly inward for
larger sediments. We shall provide qualitative explanation for this phenomenon later when we
examine the detailed velocity �eld for the 3D sediment dumping problems.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Z/Sqrt (qo)

R
c/

Sq
rt

 (
q o

)

d50=1.3mm (exp)

d50=5.0mm (exp)

numerical

Figure 6. Comparisons of spreading width of the sediment clouds as the function of
settling distance for Case 2 (q0 = 10 cm2).
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5.4. 3D sediment dumping

In this section, a 3D simulation is conducted to investigate sediment dumping in a water body
where free surface is present. The sketch of the problem is similar to Figure 4 except that the
initial sediments have a cubic shape. The computational region is 0:80 m× 0:80 m× 1:00 m
that is discretized by 80× 80× 100 uniform grids. The initial sediment cloud is introduced at
the centre of the upper surface, and it has a volume of 3 cm× 3 cm× 3 cm.
Two typical cases have been simulated, one with medium-size particles (e.g. d50 = 1:3mm)

and the other �ne particles (e.g. d50 = 0:15mm). Figures 7 and 8 showed the simulated results
of free surface pro�les and isosurfaces of density �elds. The free surface displacement has
been magni�ed in Figures 7 and 8 for better visualization. It is observed that the free surface
is pulled down initially when sediments are just released (t=0:1 s) and it comes up later
when the sediment clouds move deeper and the ambient water returns to �ll up the space
(t=0:4 s). Free surfaces gradually calm down when sediments go even deeper (t=1:0 s).
For �ne sediments, a toroid-shape cloud is formed during the descent process; whereas, a
plate-like cloud with smaller diameter is created for medium-size sediments (t=3:0 s). This
phenomenon will be explained below by examining the detailed velocity �elds associated with
the sediment clouds.
The velocity �elds and density contours at the central cross-sections are shown in

Figure 9 for �ne sediments and Figure 10 for medium-size sediments. For �ne sediments, the

Figure 7. Free surface pro�les and density isosurfaces (average of maximal and minimal �uid density)
for �ne sediments at t=0:1, 0.4, 1.0, 3.0 (s).
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Figure 8. Free surface pro�les and density isosurfaces (average of maximal and minimal �uid density)
for medium-size sediment at t=0:1, 0.4, 1.0, 3.0 (s).

generation of vortex pair is found to be similar to that in Reference [9]. The density �eld has
its maxima located near the pair of vortex centres. As a result, the sediment motion follows
closely to the vortical �uid motion, which tears down the sediment cloud and forces the
sediments to spread out in its radial direction. Such vortex-induced radial motion can persist
for rather long time even after the sediment cloud reaches the bottom and it is responsible
for the formation of the so-called density current that have been frequently reported by �eld
measurements. For example, Drapeau et al. [26] found that for very �ne sediments (e.g.
d50 = 0:063mm), density currents had signi�cant values even minutes after the sediment clouds
reached the seabed, making the dumped sediments expand radially and form a shape of
tore.
For medium-size particles, however, the phenomenon of vortex pair is not apparent and the

double peaks in density �eld disappear. This is due to the fact that larger sediments have larger
settling velocity, which makes the sediment cloud move away from vortex centres before the
vortex pair is fully developed. Subsequently, the particles will be less a�ected by the vortical
�uid motion, which has been already weakened. The corresponding cloud spreading in radial
direction is therefore smaller. As a result, the sediment cloud remains to be plate-like during
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Figure 9. Velocity �elds and density contours (at the intervals of 1=10 of density di�erence)
at the central cross-section for �ne sediments.

the descending process. This also explains why in Figure 6 the spreading width for larger
sediments is smaller and tends to bend inward.

6. CONCLUSION

In this study, a 3D numerical model for simulating strati�ed free surface �ows has been
developed based on the original 3D Reynolds-averaged Navier–Stokes (RANS) equations.
The model is the extension of an earlier �-coordinate model [15] by including additional
density variation. The new model has been validated for the 1D di�usion problem and 2D
density-gradient �ow. Excellent agreements have been obtained between the computed results
and analytical solutions. It is found that the di�usion of the density strati�ed �ow will result
in an additional �ow advection.
The model is further used to study the sediment dumping into water, which is modelled

as a strongly strati�ed �ow. While the drift velocity is obtained approximately by the settling
velocity with the exclusion of density e�ects, the eddy viscosity is also modelled by the simple
mixing-length hypothesis without the consideration of density variation. For the 2D cases
where experimental results are available, numerical experiments are conducted for sediments
with medium and large sizes. Good comparisons are obtained for both types of sediments in
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Figure 10. Velocity �elds and density contours (at the intervals of 1=10 of density di�erence)
at the central cross-section for medium-size sediments.

terms of falling velocity and spreading rate of the sediment clouds except that the downward
motion has been overestimated in the early stage of dumping due to the double accounts for
the density variation and settling velocity. The model is �nally employed to investigate the
3D sediment dumping in the presence of free surface deformation. Reasonable results have
been obtained in terms of free surface motion as well as the descending and spreading of the
sediments clouds. It is found that during the descent an annulus-like cloud will be formed for
�ne sediments whereas a plate-like cloud for sediments with medium size.
The present model has proven to be an accurate tool for studying free surface �ows with

strong density strati�cation such as sediment dumping, for which the conventional Boussi-
nesq assumption may not be valid. Future works, however, are still necessary for the more
appropriate de�nition of the drift velocity and eddy viscosity with the consideration of local
density e�ects. The individual contribution from the dynamic pressure and the actual density
strati�cation without Boussinesq assumption will also be quanti�ed and studied in the future.
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